ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance Measures for Time Series

نویسندگان

  • Elke Achtert
  • Thomas Bernecker
  • Hans-Peter Kriegel
  • Erich Schubert
  • Arthur Zimek
چکیده

ELKI is a uni ed software framework, designed as a tool suitable for evaluation of di erent algorithms on high dimensional realvalued feature-vectors. A special case of high dimensional real-valued feature-vectors are time series data where traditional distance measures like Lp-distances can be applied. However, also a broad range of specialized distance measures like, e.g., dynamic time-warping, or generalized distance measures like second order distances, e.g., shared-nearestneighbor distances, have been proposed. The new version ELKI 0.2 now is extended to time series data and o ers a selection of these distance measures. It can serve as a visualizationand evaluation-tool for the behavior of di erent distance measures on time series data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Association Rule Generation and Evaluation of Interestingness Measures for Artwork Tags

Finding associations between groups of items within a data set is referred to as the problem of association rule mining. This can be decomposed into the two subproblems frequent itemset mining and association rule generation. The open source data mining framework ELKI used throughout this work for experiments so far only supports the first subproblem. Therefore the implementation of association...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

A Framework for Clustering Uncertain Data

The challenges associated with handling uncertain data, in particular with querying and mining, are finding increasing attention in the research community. Here we focus on clustering uncertain data and describe a general framework for this purpose that also allows to visualize and understand the impact of uncertainty—using different uncertainty models—on the data mining results. Our framework ...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009